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Example 1. Consider the linear operator

L[u] = −µu′′

under homogeneous Dirichlet BCs where µ ∈ R>0.

a) Show that L is self-adjoint and positive semi-definite

The BCs correspond to u(0) = u(l) = 0. Hence α1 = α2 = 1 and β1 = β2 = 0. Now note that 1
wL = L

for p(x) = µ, w(x) = 1, and q(x) = 0. We know that 1
wL is a self-adjoint and positive semi-definite

operator for any choice of w > 0, p > 0, q ≥ 0.

b) Find the eigenvalues and normalized eigenfunctions to L

Now since L is a special case of L , this is a Regular Sturm-Liouville problem

1

w(x)
L [u](x) = λu(x)

−µu′′(x) = λu(x)

Hence λ ≥ 0 by Property 2. If λ > 0, then the ODE is readily solvable to find the general solution of

u(x) = c1 cos

(√
λ

µ
x

)
+ c2 sin

(√
λ

µ
x

)
.

If we wish to apply the ICs u(0) = 1 and u′(0) = 0 we’d find that

u(0) = 1 =⇒ c1 = 1

u′(0) = 0 =⇒
√
λ c2 = 0

Hence v1(x) = cos
(√

λ
µ x
)
and for the ICs u(0) = 0 and u′(0) = 1 we find that

u(0) = 0 =⇒ c1 = 0

u′(0) = 1 =⇒

√
λ

µ
c2 = 1

And so v2(x) =
√

µ
λ sin

(√
λ
µ x
)
.

Hence by taking

uk(x) = β1 cos

(√
λk

µ
x

)
+ α1

√
µ

λk
sin

(√
λk

µ
x

)
we know we satisfy the first BC (note I’m doing this as general as possible before applying the BCs. I
do this because I recognize that my form of p, w, and q reduces this to something corresponding to the
Heat equation. I often will want to solve the Heat equation with different BCs.). To satisfy the second
BC we consider

u′k(x) = −β1

√
λk

µ
sin

(√
λk

µ
x

)
+ α1 cos

(√
λk

µ
x

)
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and so

α2 u(l) + β2 u
′(l) = 0

α2 β1 v1(l) + α2 α1 v2(l) + β2 β1 v
′
1(l) + β2 α1 v

′
2(l) = 0

(α1 β2 + α2 β1) cos

(√
λk

µ
l

)
+

(
α1 α2

√
µ

λk
− β1 β2

√
λk

µ

)
sin

(√
λk

µ
l

)
= 0

(α1 β2 + α2 β1)

√
λk

µ
cos

(√
λk

µ
l

)
+

(
α1 α2 − β1 β2

λk

µ

)
sin

(√
λk

µ
l

)
= 0

Now if we apply our particular BCs (α1 = α2 = 1, β1 = β2 = 0) we’ll have

sin

(√
λk

µ
l

)
= 0

λk = µ

(
πk

l

)2

, k = 1, 2, . . .

with eigenfunction

uk(x) =
l

πk
sin

(
πk

l
x

)
, k = 1, 2, · · ·

To normalize these eigenfunctions we consider

∥uk∥ =

√∫ l

0
(uk(x))2 dx =

√∫ l

0

l2

π2k2
sin2

(
πk

l
x

)
dx =

√
1

2

l3

π2 k2
=

1√
2

l3/2

πk

hence the normalized version of uk is defined as

ûk =
uk
∥uk∥

=

√
2

l
sin

(
πk

l
x

)
, k = 1, 2, . . . .

From Property 2 we know that we don’t need to check λ < 0, but we do need to check λ = 0 still. In
which case we have,

−µu′′ = 0

with general solution
u(x) = c1 x+ c2

hence applying the u(0) = 1, u′(0) = 0 ICs we have

v1(x) = 1

and applying the u(0) = 0, u′(0) = 1 ICs we have

v2(x) = x

hence
u0(x) = β1 + α1 x

to apply the BC we note that

α2 v1(l) + β2 v2(l) = 0

α2 β1 v1(l) + α2 α1 v2(l) + β2 β1 v
′
1(l) + β2 α1 v

′
2(l) = 0

α2 β1 + α2 α1 l + β2 α1 = 0

Now this equation contains no λ dependence. So we cannot control it to set everything equal to zero.
In particular, for a regular Sturm-Liouville problem this is true if and only if α1 = α2 = 0. In our
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particular problem, α1 = α2 = 1 ̸= 0, hence λ = 0 is not an eigenvalue of our particular Sturm-Liouville
problem.
Thus the eigenvalues and normalized eigenfunctions for this problem are

λk = µ

(
πk

l

)2

, ûk =

√
2

l
sin

(
πk

l
x

)
, k = 1, 2, . . .

Example 2. Solve the following Heat equation via separation of variables

ut(x, t) = Duxx(x, t), u(x, 0) = f(x), u(0) = 0, u(2) = 0, 0 ≤ x ≤ 2 (1)

where

f(x) =

{
−1 0 ≤ x ≤ 1
1 1 < x ≤ 2

.

(This is the same example as in Lec 12 with l and f(x) specified). We saw already that taking u(x, t) =
X(x)T (t) gives

T ′(t)

T (t)
= D

X ′′(x)

X(x)

−T ′(t)

T (t)
=λ = −D

X ′′(x)

X(x)
.

Now that last step might seem weird, but if we do so then we ensure that the eigenvalue problem

−DX ′′(x) = λX(x), X(0) = 0 = X(2)

is a Regular Sturm-Liouville type: which is the same as Example 1 with µ = D, hence

λk = D

(
π k

2

)2

, X̂k = sin

(
π k

2
x

)
.

We saw last time that we need to solve the T ODE with the IC T (0) = (f, X̂k) and

(f, X̂k) =

∫ 2

0
w(x) f(x) X̂k dx

=

∫ 1

0
−X̂k dx+

∫ 2

1
X̂k dx

=

∫ 1

0
− sin

(
π k

2
x

)
dx+

∫ 2

1
sin

(
π k

2
x

)
dx

=
−2 cos(π k) + 4 cos

(
1
2 π k

)
− 2

π k

If k is odd then cos(π k) = −1 and cos
(
1
2 π k

)
= 0, hence (f, X̂k) = 0 for odd k. If k = 2n is even, then

cos(2π n) = 1 and cos(π n) = (−1)n hence

(f, X̂k) =
2 (−1)n − 2

π n
=

{
0 n even

− 4
π n n odd

Now that we have the values of (f, X̂k) we can solve the T ODEs and construct our solution.
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