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1 Termwise Differentiation

From the definition it is fairly straightforward to see that uniform convergence implies pointwise con-
vergence. Uniform convergence also implies mean-squared convergence. To see this, suppose {fn} → f
uniformly on [0, l]. As a result of this, given any ϵ > 0 we can find an N such that for n ≥ N

|fn(x)− f(x)| < ϵ√
l
, ∀ 0 ≤ x ≤ l.

Hence for unit weight with n ≥ N we have

∥fn − f∥2 =
∫ l

0
|fn(x)− f(x)|2 dx <

∫ l

0

ϵ2

l
dx = ϵ2

thus uniform convergence implies mean squared convergence as well! Hence uniform convergence is a
stronger measure of convergence. There are lots of properties of uniform convergence that are desirable
when compared to pointwise convergence. For instance, on the domain [0, 1] the sequence of functions
fn(x) = xn converges pointwise to the function

f(x) =

{
0 0 ≤ x < 1
1 x = 1

For x = 1 we have fn(1) = f(1), however for 0 ≤ x < 1 we have

|fn(x)− f(x)| = xn

which, for fixed n, can be made arbitrarily large by taking x arbitrarily close to 1. That is,

sup
0≤x≤1

|fn(x)− f(x)| = sup
0≤x<1

xn = 1

and so fn does not converge uniformly to f . Proving this required us to know f , which we often don’t
know explicitly. So using the definition to prove uniformity can be unwieldly, thankfully we usually use
a shortcut:

Theorem 1 (Weierstrass M-test). If Sn =
∑n

k=1 fk is a sequence of functions on [0, l] sastisfying

sup
x∈[0,l]

|Sn(x)− Sn−1(x)| = sup
x∈[0,l]

|fn(x)| ≤ Mn

for some particular Mn where
∑∞

n=1Mn < ∞, then Sn converges uniformly on [0, l] (equivalently, the
series

∑∞
n=1 fn(x) converges uniformly on [0, l]).

With the example of {xn} we saw that the pointwise limit of continuous functions is not necessarily
continuous. As a corollary to this, the pointwise limit of differentiable functions is not necessarily
differentiable. However,

Theorem 2. If
∞∑
n=1

fn(x) = f(x)

uniformly on the interval [0, l] and fn is continuous on [0, l] for each n, then f(x) is continuous on [0, l]
and

∞∑
n=1

∫ l

0
fn(x) dx =

∫ l

0
f(x) dx.

(i.e. the uniform limit of continuous functions is continuous and uniformly convergent series can be
integrated termwise).
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Theorem 3. If
∑∞

n=1 fn(c) is convergent for any one c ∈ [0, l] and
∑∞

n=1 f
′
n(x) converges uniformly on

[0, l], then
∑∞

n=1 fn(x) converges uniformly on [0, l] to some function f(x) and

∞∑
n=1

f ′
n(x) dx = f ′(x)

(i.e. uniformly convergent series can be differentiated termwise).

Example 1.

For a counter-example to term-by-term differentiation, consider the function f(x) = x on x ∈ [0, l] with

X̂k =
√

2
l sin

(
k π
l x

)
. The generalized Fourier series is then

x =

∞∑
k=1

(f, X̂k) X̂k(x) =

∞∑
k=1

2 l

k π
(−1)k+1 sin

(
k π

l
x

)
, x ∈ [0, l]

and if we differentiate the series termwise we obtain

∞∑
k=1

2 (−1)k+1 cos

(
k π

l
x

)
. (1)

Now this result is weird for many reasons. First of all, (1) clearly isn’t in terms of X̂k anymore. That’s
fine, if we define

Ŷk(x) =

√
2

l
cos

(
k π

l
x

)
and consider the generalized Fourier series of f ′ in terms of Ŷk (in this case, a Fourier cosine series of
f ′) we would get something completely different than (1). Moreover, recall (from Math 138 or similar)
that

∞∑
k=1

ak

converges only if limk→∞ ak = 0 and

lim
k→∞

2 (−1)k+1 cos

(
k π

l
x

)
does not even converge in general (let alone decay to zero). So in this case termwise differentiation gave
us something that wasn’t even convergent let alone equal to the general Fourier series of the derivative
function (f ′(x) = 1).
So back to our heat equation separation of variables, are we justified in taking derivatives termwise?
The answer is no, in general. Near the discontinuities Gibb’s phenomenon will always appear, hence
we are not able to achieve uniform convergence. Moreover we can show that our separation of variables
solution is not correct at the discontinuities. For instance, uk(1, t) = 0 ∀k, but the real solution of
the PDE is non-zero at x = 1 (initially, u(1, 0) = −1 and it will exponentially decay to zero as time
increases). We saw that the generalized Fourier series of the discontinuous f(x) converged pointwise on
(0, 1) ∪ (1, 2). In fact for any ϵ > 0, the Fourier series converges uniformly on

[ϵ, 1− ϵ] ∪ [1 + ϵ, 2− ϵ]

because the over-shoot/under-shoot from Gibb’s phenomenon will be pushed into that ϵ-buffer around
the discontinuities by taking more terms in the series. So our problems here were because f(x) was
discontinuous, but the separation of variables solution is trustworthy on a domain that is separated
from the discontinuities.
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