1 Examples

Example 1. Prove that the following series

$$
\sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} \frac{k^2 + x^4}{k^4 + x^2}
$$
 (1)

converges to a function that is continuous for all $x \in \mathbb{R}$

This proof will continue in two parts.

- 1. We will use Weierstrass' M-Test to show that the series converges uniformly on $[-l, l]$ for some $l > 0$
- 2. We will then conclude that the function must be continuous on all R

Let $S_n(x)$ denote the nth partial sum of the series in [\(1\)](#page-0-0) and let $l > 0$ be given. The M-test says that if

$$
\sup_{x \in [0,l]} |S_n(x) - S_{n-1}(x)| = \sup_{x \in [0,l]} \left| \frac{n^2 + x^4}{n^4 + x^2} \right| \le M_n
$$

where the M_n s form a convergent series, then the series in [\(1\)](#page-0-0) converges uniformly on [0, l]. Now for $x \in [0, l]$ we have

$$
\left| \frac{n^2 + x^4}{n^4 + x^2} \right| \le \frac{n^2 + x^4}{n^4}
$$

$$
\le \frac{1}{n^2} + \frac{l^4}{n^4} = M_n
$$

The series

$$
\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n^2} + l^4 \sum_{n=1}^{\infty} \frac{1}{n^4}
$$

is convergent (two p-series with $p > 1$). Hence [\(1\)](#page-0-0) converges uniformly on [0, l]. Now note that $S_n(x) = S_n(-x)$, hence [\(1\)](#page-0-0) converges uniformly on [-l,l]. (Alternatively, change units in x so that $\hat{x} \in [-l, l]).$

First note that $f_k(x)$ is continuous for any k or x. Now for any $x \in \mathbb{R}$, we can find an l such that $x \in [-l, l]$. Then, since [\(1\)](#page-0-0) converges uniformly on this restricted interval, it must be that (1) is continuous at x. Since the choice of x is arbitrary, we have that [\(1\)](#page-0-0) is continuous on all \mathbb{R} .

Example 2 (Example 1b.). Is it the case that [\(1\)](#page-0-0) is uniformly convergent on \mathbb{R}^2

No. The argument above is enough to conclude pointwise convergence of [\(1\)](#page-0-0). Hence let $f(x) =$ $\sum_{k=1}^{\infty} f_k(x)$, To be uniformly convergent on R the supremum would be taken over R, that is

$$
\sup_{x \in \mathbb{R}} |S_n(x) - f(x)| = \sup_{x \in \mathbb{R}} \left| \sum_{k=n+1}^{\infty} \frac{n^2 + x^4}{n^4 + x^2} \right| = \infty
$$

so the series does not converge uniformly.

2 Relation to Generalized Fourier Series

Recall our general boundary conditions for a domain V are

$$
\alpha(\vec{x}) u + \beta(\vec{x}) \frac{\partial u}{\partial n} \big|_{\partial V} = B(\vec{x}, t)
$$

for $x \in \partial V$ (so-called Robin BCs). Another type of BC we considered at the beginning of the course was the periodic boundary condition. In 1D these are BCs like

$$
u(0,t) = u(l,t), \quad u_x(0,t) = u_x(l,t)
$$

Theorem 1. If f is continuous with continuous first and second derivatives on [0, l] (i.e. $f \in C^2([0, l])$) and f satisfies Robin or periodic boundary conditions, then the generalized Fourier series of f converges uniformly on $[0, l]$.

So in the context of using eigenfunctions to solve PDEs, this means that as long as our initial data is C^2 , the separation of variables technique is trustworthy everywhere. Contrast this with last week, where discontinuous initial data led us to solutions that were only trustworthy away from the discontinuities.