
AMATH 353. June 27th, 2022 Instructor: B. Eastman

Drum Example Continued

Example 1. Solve the 2D wave equation (in polar coordinates) for a vibrating drum head of radius 1
via separation of variables.

Last time we applied the r = 0 BC to find that

R(r) = DJn

(√
λ

c
r

)
.

If we applying the other BC at r = 1 we see that either D = 0 (which we reject) or

Jn

(√
λ

c

)
= 0. (1)

Since the R ODE was a Sturm-Liouville problem it must be the case that we can find countably infinitely
many non-negative λs that make (1) true. This is part of the power of Sturm-Liouville analysis: the
Bessel functions are very complicated, and the order of these Bessel functions is not necessarily integer,
however these λs exist. To find these roots in practice, one would either use a numerical solver or
consult a table of values. In any case, we label these roots

√
λm,n/c for m = 1, 2, . . .. (Here the n

indicates (part) of the order the Bessel function. That Bessel function of order n has infinitely many
non-negative zeros: which we count by the index m: that is n comes from the µ eigenvalue and m from
the λ eigenvalue).
All together,

Rm(r) = Dm Jn

(√
λm,n

c
r

)
.

Now finally, for the T equation we have

T ′′ + λm,n T = 0

where we know that λm,n ≥ 0. Hence,

T (t) = F sin
(√

λm,n t
)
+G cos

(√
λm,n t

)
but since T ′(0) = 0 we have F = 0.
Then

um,n(r, θ, t) = (am,n cos(n θ) + bm,n sin(n θ)) Jn

(√
λm,n

c
r

)
cos
(√

λm,n t
)

All together our solution becomes

u(r, θ, t) =
∞∑

m=1

∞∑
n=0

um,n(r, θ, t)

where we’ve applied all BCs/ICs except the u(r, θ, 0) = 1− r2 IC.
Now the functions um,n(r, θ, t) are called the modes or the harmonics of the system. The zeroes of
the modes are called the nodes and the places where the modes reach maximum amplitudes are called
antinodes. Often you can recover much of the spatial structure of the full solution by plotting only a
few modes. While the modes technically depend upon t, often we fix t to a particular value and only
consider the spatial structure of the modes.
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To apply the final IC we consider

u(r, θ, 0) =

∞∑
m=1

∞∑
n=0

(am,n cos(n θ) + bm,n sin(n θ)) Jn

(√
λm,n

c
r

)
= 1− r2.

but first I’ll define

âm,n = am,n

∥∥∥∥∥Jn
(√

λm,n

c
r

)∥∥∥∥∥
and b̂m,n analogously so that the u(r, θ, 0) equation becomes

u(r, θ, 0) =

∞∑
m=1

∞∑
n=0

(
âm,n cos(n θ) + b̂m,n sin(n θ)

)
Ĵn

(√
λm,n

c
r

)
= 1− r2.

where the Bessel functions have now been normalized.
We want to find the values of âm,n and b̂m,n. First, take it as fact that for k ̸= 0 with integer k and m
that ∫ 2π

0
cos(k θ) cos(mθ) dθ = π δm,k∫ 2π

0
sin(k θ) sin(mθ) dθ = π δm,k∫ 2π

0
sin(k θ) cos(mθ) dθ = 0.

(These are standard calculations often first justified in an intro to Fourier series course. The process of
obtaining these relations is a straightforward exercise in first year calculus).
Hence for k ̸= 0 ∫ 2π

0
cos(k θ)u(r, θ, 0) dθ =

∫ 2π

0
cos(k θ) (1− r2) dθ

or, substituting in our series form, (in this next step I’m justified in exchanging the order of the integral
and the series operator because of a theorem from last Wednesday (Lec 21): namely, since 1−r2 is a C2

function in θ on [0, 2π] and Θ and f satisfy the periodic boundary conditions we have that the series
converges uniformly. The Bessel function factor can be viewed as a constant, as far as θ is concerned).

∞∑
m=1

∞∑
n=0

Ĵn

(√
λm,n

c
r

) (
âm,n

∫ 2π

0
cos(n θ) cos(k θ) dθ + b̂m,n

∫ 2π

0
sin(n θ) cos(k θ) dθ

)
= 0

∞∑
m=1

∞∑
n=0

Ĵn

(√
λm,n

c
r

)
âm,n δn,k = 0

∞∑
m=1

Ĵk

(√
λm,k

c
r

)
âm,k = 0

Hence âm,k =

(
0, Ĵk

(√
λm,k

c r

))
= 0 if k ̸= 0. A very similar argument shows b̂m,k = 0 if k ̸= 0. Now

note that the value b̂m,0 doesn’t affect the form of u since sin(n θ) = 0 for n = 0 and so we take b̂m,0 = 0.
All that to say,

u(r, θ, 0) =
∞∑

m=1

âm,0 Ĵ0

(√
λm,0

c
r

)
= 1− r2

and so

âm,0 =

(
1− r2, Ĵ0

(√
λm,0

c
r

))
.
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Note this argument works for more than just 1− r2 – it works for any IC of the form u(r, θ, 0) = f(r)
by replacing 1− r2 with f(r) above. All told our solution to the PDE is then

u(r, θ, t) =
∞∑

m=1

âm,0 Ĵ0

(√
λm,0

c
r

)
cos
(√

λm,0 t
)

1. The solution u is independent of θ because my initial data were independent of θ.

2. Through a series of calculations by taking w(r) = r in the inner product we could find the values of
âm,0 and the normalization constants (or equivalently, the values of am,0) in terms of the values of
other Bessel functions J1 and J2 evaluated at

√
λm,0/c (the m roots of J0). This isn’t necessarily

practical as the values of the roots of J0 are things we need a computer for anyway (but it is cool).

3. If t is measured in seconds, then
√

λm,0 is measured in Hz (due to the cos factor). These λs
intimately depend upon our boundary conditions. In a really (really) cool paper, it was shown
that you can go backwards: given the λs, you can determine the shape of the boundary (these
inverse-eigenvalue problems are very important in physics/biology). Now these

√
λs are measured

in Hz and correspond to the tones of the drum. All that to say, if you listen very very closely, you
can hear the shape of a drum.
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