
AMATH 353. June 27th, 2022 Instructor: B. Eastman

Duhamel’s Principle

So far we have only dealt with homogeneous PDEs, now we turn our attention to inhomogeneous
PDEs and what is known as Duhamel’s principle. For our purposes this will allow us to translate
inhomogeneous PDEs (or forced PDEs) into homogeneous ones. To begin, recall the hyperbolic and
parabolic equations (Lec 12)

w(x)utt(x, t) + L [u](x, t) = w(x)F (x, t), t > 0︸ ︷︷ ︸
hyperbolic

and w(x)ut(x, t) + L [u](x, t) = w(x)F (x, t), t > 0︸ ︷︷ ︸
parabolic

(for non-zero F this is inhomogeneous). While we’re focused on the 1D problem, the method works
for any number of spatial dimensions. For the moment we’ll weaken our initial conditions to the
homogeneous ICs:

u(x, 0) = 0, ut(x, 0) = 0︸ ︷︷ ︸
hyperbolic

and u(x, 0) = 0︸ ︷︷ ︸
parabolic

.

This process works for both infinite spatial domains and finite spatial domains. In order to use Duhamel’s
principle, we instead consider the related homogeneous problem in terms of a new function v(x, t; τ)

w vtt + L [v] = 0, t > τ︸ ︷︷ ︸
hyperbolic

and w vt + L [v] = 0, t > τ︸ ︷︷ ︸
parabolic

where v has different initial conditions. First of all, the ICs take place at t = τ and are

v(x, τ ; τ) = 0, vt(x, τ ; τ) = F (x, τ)︸ ︷︷ ︸
hyperbolic

and v(x, τ ; τ) = F (x, τ)︸ ︷︷ ︸
parabolic

.

This translated PDE in terms of v is something that we know how to solve using methods from earlier
in the course (characteristics/separation). If we’re dealing with a finite spatial domain, then v satisfies
the same homogeneous BCs. Duhamel’s principle then states that

u(x, t) =

∫ t

0
v(x, t; τ) dτ.

To justify this method we need to be able to calculate the values of ut and utt, for which we will need
to utilize Leibniz’s Rule

d

dt

∫ b(t)

a(t)
f(x, t) dx = b′(t) f(b(t), t)− a′(t) f(a(t) t) +

∫ b(t)

a(t)

∂f

∂t
(x, t) dx

Hence,

ut(x, t) =
∂

∂t

(∫ t

0
v(x, t; τ) dτ

)
= v(x, t; t) +

∫ t

0
vt(x, t; τ) dτ

utt(x, t) =
∂

∂t
(v(x, t; t)) + vt(x, t; t) +

∫ t

0
vtt(x, t; τ) dτ
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We note that in both the parabolic and hyperbolic case the IC u(x, 0) = 0 is satisfied (since u(x, 0) =∫ 0
0 v(x, t; τ) dτ = 0). Now we’ll justify the parabolic case. In the parabolic case we have

w(x)ut + L [u] = w(x)

(
v(x, t; t) +

∫ t

0
vt(x, t; τ) dτ

)
+ L

[∫ t

0
v(x, t; τ) dτ

]
= w(x)F (x, t) + w(x)

∫ t

0
vt(x, t; τ) dτ +

∫ t

0
L [v(x, t; τ)] dτ

= w(x)F (x, t) +

∫ t

0
w vt + L [v] dτ

= w(x)F (x, t)

Moving from line (1) to (2) above we are using the v(x, τ ; τ) initial condition with τ 7→ t and we’re
bringing L under the integral since L only deals with spatial derivatives. Finally, the last step from
lines (3) to (4) is justified because v solves the PDE for t > τ . Since we’re integrating τ between 0 and
t we have τ < t. Since the only IC for the parabolic case is satisfied, u solves the parabolic IVP.
Very similarly in the hyperbolic case we have

w(x)utt + L [u] = w(x)

(
∂

∂t
(0) + F (x, t) +

∫ t

0
vtt(x, t; τ) dτ

)
+ L

[∫ t

0
v(x, t; τ) dτ

]
= w(x)F (x, t) +

∫ t

0
w vtt + L [v] dτ

= w(x)F (x, t).

In this case we have the additional IC ut(x, 0) = 0 and

ut(x, 0) = v(x, 0; 0) +

∫ 0

0
vt(x, t; τ) dτ = 0.

(Where the first term is zero because of the IC for v in the hyperbolic case).
This whole process depends upon us having an inhomogeneous PDE for u with homogeneous ICs. In
full generality if we wanted to solve a PDE like

w utt + L [u] = w(x)F (x, t), t > 0, u(x, 0) = f(x) ut(x, 0) = g(x)

we’d solve two PDEs. The first

w u
(1)
tt + L [u(1)] = w(x)F (x, t), t > 0, u(1)(x, 0) = u

(1)
t (x, 0) = 0

we’d solve with Duhamel’s principle and the second

w u
(2)
tt + L [u(2)] = 0, t > 0, u(2)(x, 0) = f(x), u

(2)
t (x, 0) = g(x)

we’d solve with techniques from earlier in the course. Then u(x, t) = u(1)(x, t) + u(2)(x, t) would solve
the inhomogeneous PDE with inhomogeneous ICs.
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