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Eigenfunction Example: Resonance

Consider solving the following inhomogeneous hyperbolic equation via the method of eigenfunction
expansion:

w(x)utt(x, t) + L [u](x, t) = w(x) X̂j(x) sin(ω t), u(x, 0) = ut(x, 0) = 0

where X̂j is an eigenfunction of (1/w)L . That is, the PDE is being forced with the spatial structure
of an eigenfunction (and temporal part a sinusoid with radian frequency ω).
In the notation from last time,

Fk(t) = (F (x, t), X̂k) = (X̂j(x) sin(ω t), X̂k(x)) = sin(ω t) (X̂j(x), X̂k(x)) = sin(ω t) δj,k.

We saw that the method of eigenfunction expansions reduced to solving an ODE of the form

d2Tk

dt2
+ λk Tk = Fk, Tk(0) = (f(x), X̂k), T ′

k(0) = (g(x), X̂k) k = 1, 2, . . .

where λk is the eigenvalue to (1/w)L associated with X̂k.
In this example f(x) = g(x) = 0 so the ICs to the ODE are Tk(0) = T ′

k(0) = 0. Thus, the only thing
keeping the ODE from having non-trivial solutions is the forcing term/inhomogeneity Fk(t). But we
showed that Fk(t) = 0 for all k ̸= j and Fj(t) = sin(ω t). Thus Tk(t) = 0 for all k ̸= j. We only need to
solve one ODE to find the solution to our inhomogeneous PDE!
We focus on

d2Tj

dt2
+ λj Tj = Fj = sin(ω t), Tj(0) = T ′

j(0) = 0. (1)

This ODE is inhomogeneous. We solve it via Laplace Transforms.

Brief Laplace Transform Review

Recall (from AMATH 250/251 or similar) that for the Laplace transform L we have (for constants c1,
c2, and ω and arbitrary functions F and G)

L[c1 F (t) + c2G(t)] = c1 L[F ] + c2 L[G] Sim. for L−1

L[y′] = sL[y]− y(0)

L[y′′] = s2 L[y]− s y(0)− y′(0)

L−1 [L[F ]] = F

L−1 [L[F ]L[G]] = F ∗G =

∫ t

0
F (t− τ)G(τ) dτ

L[sin(ω t)] =
ω

ω2 + s2

Hence to solve our inhomogeneous ODE (1) we proceed by taking the Laplace transform of both sides
to see:

L
[
d2Tj

dt2

]
+ λj L [Tj ] = L [Fj ]

s2L [Tj ]− s Tj(0)− T ′
j(0) + λj L [Tj ] = L [Fj ]

(s2 + λj)L [Tj ] = L [sin(ω t)]

L[Tj ] =
1

s2 + λj

ω

ω2 + s2

1



hence, by inverting the Laplace transform of both sides, we have

Tj(t) = L−1

[
1√
λj

√
λj

s2 + λj

]
∗ L−1

[
ω

ω2 + s2

]

=
1√
λj

L−1

[ √
λj

s2 + λj

]
∗ L−1

[
ω

ω2 + s2

]
=

1√
λj

sin
(√

λj t
)
∗ sin(ω t)

=
1√
λj

∫ t

0
sin(

√
λj (t− τ)) sin(ω τ) dτ

=
1√
λj

(
ω sin(

√
λj t)−

√
λj sin(ω t)

ω2 − λj

)
.

Putting it all together our final solution is

u(x, t) =

∞∑
k=1

X̂k(x)Tk(t) = X̂j(x)Tj(t) =
1√
λj

(
ω sin(

√
λj t)−

√
λj sin(ω t)

ω2 − λj

)
X̂j(x).

Now ω was unspecified – so we would hope for a solution for all ω ∈ R. The problem is: what about
ω =

√
λj? In that situation we take

u(x, t) = lim
ω→

√
λj

1√
λj

(
ω sin(

√
λj t)−

√
λj sin(ω t)

ω2 − λj

)
X̂j(x)

=
1

2
√

λj

(
sin(

√
λj t)√
λj

− t cos(
√
λj t)

)
X̂j(x)

with a little bit of help from l’Hôpital.
What does this mean? In the first case (ω ̸=

√
λj), we have that forcing via an eigenfunction collapses

our solution down to a projection onto a single eigenfunction. i.e. the solution’s spatial structure is
dictated by that forcing eigenfunction. If additionally, we have that our forced solution oscillates in
time at the frequency associated with the forcing eigenfunction (ω =

√
λj), then not only is the spatial

structure completely dicated by the eigenfunction but the solution grows quasi-linearly in time! (In
the sense that solutions are still oscillatory in time, but the amplitude of those oscillations is growing
linearly).
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