
AMATH 353. July 20th, 2022 Instructor: B. Eastman

Previously we saw that for a discontinuous initial condition, we had positions in space-time where there
are no characteristics (and so no solution). To fill in the void we insert what is known as an expansion
fan. We define the fan as

ϕ(x, t) =
x− x0
t− t0

for constant values of x0 and t0. (Which we’ll find next time) which solves the PDE (easy to check).
We must choose x0 and t0 to satisfy continuity conditions.

ϕ(a+ t A, t) = A for all t

ϕ(a+ tB, t) = B for all t

i.e.

a+ t A− x0 = t A− t0A

a+ tB − x0 = tB − t0B

subtracting the two gives t0(A − B) = 0 =⇒ t0 = 0 and putting this back into either of the above
equations yields x0 = a. Hence, our expansion fan is

ϕ(x, t) =
x− a

t

which fills in the gaps between the characteristics. This expansion fan is the continuous interpolation of
our solution in this problem area. Expansion fans arise due to a discontinuity in our initial data. While
this may seem like a simple enough idea, an extension (called the Prandtl–Meyer fan) is very useful in
aerodynamics.
All told, then, our solution is

u(x, t) =


B x ≤ a+ tB
x−a
t a+ tB < x ≤ a+ t A
A x > a+ t A

.

Fourier Transform and Separation of Variables

For linear PDEs on finite spatial domains, the method of separation of variables is quite powerful. It’s
natural to try and adapt this method from finite domains to infinite ones. We will spend the rest of
the course investigating something interesting that happens when we do so. We’ll extend the method of
separation of variables to infinite domains. Along the way we’ll see we need some generalization of the
Fourier series to integrals. This will result in the Fourier Transform. The Fourier Transform, it turns
out, reduces solving infinite domain PDEs down to solving reduced, easier problems (either algebraic
equations or ODEs). This transform is so useful, we don’t tend to actually use the method of separation
of variables on infinite domains anyway (as doing so is equivalent to solving via Fourier Transform).
The fundamental difference between finite domain problems and infinite domain problems is the number
of eigenvalues. In finite domains, we had countably infinitely many eigenvalues. That is, the spectrum
was discrete

0 ≤ λ0 < λ1 < · · ·
and we wrote our solution as

u(x, t) =
∞∑
k=0

Tk(t) X̂k(x)

In contrast, on infinite domains, we have uncountably infinitely many eigenvalues. That is, the spectrum
is continuous and we write our solution as

u(x, t) =

∫ ∞

0
Tλ(t) X̂λ(x) dλ =

∫ ∞

−∞
Tω(t) X̂ω(x) dω
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If we perform separation of variables by assuming u = X(x)T (t), we’ve seen that in all three cases we
deal with an eigenvalue problem

1

w(x)
L [X](x) = λX(x) = ω2X(x)

(where I’m using Sturm-Liouville theory that says that eigenvalues are non-negative).
Consider a really simple form of this problem where w = 1, p = 1, and q = 0 (as in the case of the
prototypical equations), then L = −∇2 and

X ′′ + ω2X = 0, −∞ < x < ∞

Which we can immediately solve as

X̂ω(x) = a(ω) ei ω x + b(ω) e−i ω x

for some a(ω) and b(ω) that normalize the function – (a different constant for each ω ∈ R, hence a and
b are functions of ω). Now, at this step we can’t completely determine the form of a and b because we
do not have any boundary conditions on an infinite domain. Hence we’ll need to use the IC at this step.
Suppose we had to satisfy some IC u(x, 0) = f(x) then, in any of the three cases, we have

f(x) =

∫ ∞

−∞
Tω(0) X̂ω(x) dω

=

∫ ∞

−∞
Tω(0) a(ω) e

i ω x + Tω(0) b(ω) e
−i ω x dω

=

∫ ∞

−∞
α(ω) ei ω x + β(ω) e−i ω x dω

Now this is also true under the transformation ω → (−ω̃) which yields

f(x) = −
∫ −∞

∞
α(−ω̃) e−i ω̃ x + β(−ω̃) ei ω̃ x dω̃

=

∫ ∞

−∞
α(−ω̃) e−i ω̃ x + β(−ω̃) ei ω̃ x dω̃

adding these two together gives

2 f(x) =

∫ ∞

−∞
(α(ω) + β(−ω)) ei ω x + (α(−ω) + β(ω)) e−i ω x dω

Let γ(ω) = α(ω) + β(−ω), then we have

2 f(x) =

∫ ∞

−∞
γ(ω) ei ω x dω +

∫ ∞

−∞
γ(−ω) e−i ω x dω =

∫ ∞

−∞
γ(ω) ei ω x dω +

∫ ∞

−∞
γ(ω̃) ei ω̃ x dω̃

therefore

f(x) =

∫ ∞

−∞
γ(ω) ei ω x dω.

for some, as of yet unknown function, γ(ω). This is an example of an integral transform, an operation
that changes a function of one variable (in this case, γ(ω)) and translates it into a function of another
(in this case, f(x)). These transforms are often only useful when they’re invertible. That is, can we
find γ(ω) if given f(x)? Note that in this case, that’s what we really care about. We are always given
f(x), if we can use that to find γ, then we can construct α and β in which case we have the solution to
our PDE.
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Dirac’s Delta

We’ve used Kronecker’s Delta extensively

δi,j =

{
1 i = j
0 i ̸= j

in the study of eigenfunction expansions over a discrete spectrum. A continuous version of the discrete
Kronecker’ delta is the Dirac delta.
Formally, Dirac’s Delta is a generalized function (really, a probability distribution of a sure event) with
the normalization property: ∫ ∞

−∞
δ(x) dx = 1

and the sifting property: ∫ ∞

−∞
f(x) δ(x− a) dx = f(a).

(Contrast this with
∞∑
n=0

δn,a = 1 and
∞∑
n=0

cn δn,a = ca

in the discrete case).
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