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Informally, you can think of §(x) as a limit as n — oo of nascent-delta functions

on(x) = %e*’”ﬂ

where these §,s are the pdf of the normal distribution with mean g = 0 and standard deviation
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More formally, we can derive one of many integral forms of §(x) such as

d(z) :2177/ e dw.
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We want to derive the above form by demonstrating that it is a limit of nascent-delta functions.
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Armed with this we return to our separation.
Given
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we multiply both sides by e *“? for some w € R
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Now and define an transformation and its inverse. However, it’s “ugly” that there isn’t a
symmetry in the two integrals (due to the 1/(27) term. For that reason, one typically defines f(w) =

NoT e ~(w). In which case we get:

Definition 1 (Fourier Transform). We define the (forward) Fourier transform of an absolutely integrable
function f(x) as

Flf(2)] = f(w) = ¢;7 / © f@)ewr s

and the inverse (or backward) Fourier transform as
FUf@I = @)= = [ f)eerdu
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Definition 2 (Absolutely Integrable). If
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then f is absolutely integrable.

A necessary condition to being absolutely integrable is that lim, 1~ f(z) = 0; we’ll use this later.
Intuitively, the Fourier transform trades a function of x (physical space) for a function of w (angular
frequency). Hence the FT takes a function from the spatial domain to the frequency domain.
(Alternatively, we could re-scale w — 27k in order to arrive at a “symmetric” transform/inverse
transform pair, however w represents an angular frequency and k£ an oscillation frequency so certain
disciplines tend to use different versions of the same transform. More pure-mathematicians prefer the
version in k — it doesn’t require any extra constants in front of the integral; physicists and engineers
tend to prefer the version in w and differ in if they rescale constants to make the transform symmetric
or not).

General Properties of the Fourier Transform

1. Linearity the Fourier transform is a linear operator.

2. Space-Shift Formula we have
Flf(x = o)) = '™ f(w)

3. Frequency Shift Formula we have
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