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4. If f is piecewise continuously differentiable, then f(x) = F−1[F [f(x)]]

5. If f(x) is discontinuous at x0, then

F−1[F [f(x)]](x0) =
1

2

(
f(x−0 ) + f(x+0 )

)
(where ± mean limits from the right/left respectively).

6. The Fourier transform preserves the value under the square norm (with unit weight function)

∥f̂∥ =

√∫ ∞

−∞
|f̂(ω)|2 dω =

√∫ ∞

−∞
|f(x)|2 dx = ∥f∥

To see this take∫ ∞

−∞
|f̂(ω)|2 dω =

∫ ∞

−∞
f̂(ω) f̂(ω) dω

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
e−i ω xf(x) dx

)(∫ ∞

−∞
e−i ω s f(s) ds

)
dω

=

∫ ∞

−∞

∫ ∞

−∞
f(x) f(s)

(
1

2π

∫ ∞

−∞
e−i ω (x−s) dω

)
ds dx

=

∫ ∞

−∞
f(x)

∫ ∞

−∞
f(s) δ(x− s) ds dx

=

∫ ∞

−∞
|f(x)|2 dx

7. Let f̂(ω) = F [f ] and ĝ(ω) = F [g], then

F−1[f̂(ω) ĝ(ω)] =
1√
2π

∫ ∞

−∞
ei ω xf̂(ω) ĝ(ω) dω

=
1

2π

∫ ∞

−∞
ei ω x

∫ ∞

−∞
e−i ω sf(s) ds ĝ(ω) dω

=
1

2π

∫ ∞

−∞
f(s)

∫ ∞

−∞
ei ω (x−s) ĝ(ω) dω ds

=
1√
2π

∫ ∞

−∞
f(s) g(x− s) ds

=
1√
2π

(f ∗ g)(x)

8. The Fourier transform of a derivative simplifies via IBP (with u = e−i ω x and dv = f ′(x) dx)

F
[
df

dx

]
=

1√
2π

∫ ∞

−∞
e−i ω x df

dx
dx

=
1√
2π

([
e−i ω x f(x)

]∞
−∞ + i ω

∫ ∞

−∞
e−i ω x f(x) dx

)
= iωF [f ]

Hence, by induction, we have that

F
[
dnf

dxn

]
= (i ω)nF [f ]

for n ≥ 1.
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It’s these last properties that make Fourier transforms so useful. So-far we’ve only considered the
Fourier transform of a function of one variable. For multivariate functions you can Fourier transform
either variable. That is, you can consider the Fourier transform in space

û(ω, t) = F [u(x, t)] =

∫ ∞

−∞
u(x, t) e−i ω x dx

or (on an infinite temporal domain) the Fourier transform in time

û(x, ω) = F [u(x, t)] =

∫ ∞

−∞
u(x, t) e−i ω t dt

(though the former is the most common).

Application to PDEs

Example: Use the Fourier Transform method to find the general solution to the equation

utt + 2γut + γ2u = c2uxx

where γ and c are constants. This is a special case of the telegraph equation, which you can see reduces
to the wave equation when γ = 0.

Solution: We use the Fourier transform with respect to x. We have

F [u(x, t)] = û(ω, t) =
1√
2π

∫ ∞

−∞
u(x, t) e−iωx dx

The inverse Fourier transform is,

u(x, t) =
1√
2π

∫ ∞

−∞
û(ω, t) eiωx dω

Thus we have,

F [uxx(x, t)] = (iω)2 û(ω, t), F [ut(x, t)] = ût(ω, t), F [utt(x, t)] = ûtt(ω, t)

Thus the PDE becomes
ûtt + 2γût + γ2û = −c2ω2û.

That is,
ûtt + 2γût +

(
γ2 + c2ω2

)
û = 0.

We can treat this as a second-order ODE. The characteristic equation is

r2 + 2γr +
(
γ2 + c2ω2

)
= 0

Thus, we have

r = γ ±
√

γ2 − (γ2 + c2 ω2) = −γ ±
√
−c2 ω2 = −γ ± i c ω

Therefore, the solution is

û (ω, t) = F̂ (ω) e(−γ+c ω i) t + Ĝ (ω) e(−γ−c ω i) t

= e−γt
[
F̂ (ω) ec ω i t + Ĝ (ω) e−c ω i t

]
.

Applying the inverse Fourier transform, and using the space-shift formula, we obtain

u (x, t) = e−γt [F (x+ c t) +G (x− c t)] .

This represents the motion of waves moving in opposite directions of exponentially decaying amplitude.
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Heat Kernel

Consider the Heat equation
ut = Duxx

on an infinite domain with D > 0 for t > 0 with IC u(x, 0) = f(x). We will compute the Fourier
transform in x of this IC and PDE to see

û(ω, 0) = F [u(x, 0)] = F [f(x)] = f̂(ω)

and, for the PDE,

F [ut] = F [Duxx]

∂

∂t
F [u] = DF [uxx]

∂

∂t
û(ω, t) = D (i ω)2 û(ω)

∂

∂t
û(ω, t) = −Dω2 û(ω)

which is an ODE that is easily solvable as

û(ω, t) = f̂(ω) e−Dω2 t.

Now this is the solution in frequency-space. To recover the solution in physical-space we must invert
the transform to see

u(x, t) = F−1[f̂(ω)e−Dω2 t] =

∫ ∞

−∞
f(s)G(x− s, t) ds

by the convolution property where

G(x, t) =
1√
2π

F−1[e−Dω2 t] =
1

2π

∫ ∞

−∞
ei ω x e−Dω2 t dω.

This G(x, t) function is very important and is called the heat-kernel. Let’s fix t and focus on the integral

I(x) =

∫ ∞

−∞
ei ω xe−Dω2 t dω

=

∫ ∞

−∞
(cos(ω x) + i sin(ω x))e−Dω2 t dω

since sin is an odd function, the imaginary part of this integral is identically zero, thus

I(x) =

∫ ∞

−∞
cos(ω x) e−Dω2 t dω = 2

∫ ∞

0
cos(ω x) e−Dω2 t dω

since cos is even.
Now

I(0) = 2

∫ ∞

0
e−Dω2 t dω =

√
π

D t

moreover

I ′(x) = −2

∫ ∞

0
ω sin(ω x) e−Dω2 t dω

=
1

D t

[
e−Dω2 t sin(ω x)

]ω=∞

ω=0
− x

D t

∫ ∞

0
e−Dω2 t cos(ω x) dω

= − x

2D t
I(x)
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(by IBP with u = sin(ω x) and dv = −2ω e−Dω2 t dx). Hence we have an ODE for I complete with IC.
We can solve this to see

I(x) =

√
π

D t
exp

(
−x2

4D t

)
and the heat kernel

G(x, t) =
1√

4πD t
exp

[
−x2

4D t

]
.

All told, our integral solution on an infinite spatial domain is

u(x, t) =
1√

4πD t

∫ ∞

−∞
exp

[
−(x− s)2

4D t

]
f(s) ds.

It should be clear that given the heat kernel G(x, t) we can calculate the solution of the heat equation
for any initial condition f(x) via convolution

u(x, t) = (f ∗G)(x, t).

Now f(x) is independent of t so the temporal component of (f ∗ G)(x, t) is determined entirely by
G(x, t). So for any IC of the heat equation, the solution’s temporal component is determined by G.
There is nothing “special” about the heat equation for determining a kernel, you can find a kernel (or
fundamental solution) of different PDEs too. The heat equation is special in that the heat-kernel has
a nice, closed form analytical solution.
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